Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
1.
J Cancer Res Clin Oncol ; 150(4): 199, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627278

RESUMO

PURPOSE: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant and fatal liver tumor with increasing incidence worldwide. Lactate metabolism has been recently reported as a crucial contributor to tumor progression and immune regulation in the tumor microenvironment. However, it remains poorly identified about the biological functions of lactate metabolism in iCCA, which hinders the development of prognostic tools and therapeutic interventions. METHODS: The univariate Cox regression analysis and Boruta algorithm were utilized to identify key lactate metabolism-related genes (LMRGs), and a prognostic signature was constructed based on LMRG scores. Genomic variations and immune cell infiltration were evaluated in the high and low LMRG score groups. Finally, the biological functions of key LMRGs were verified with in vitro and in vivo experiments. RESULTS: Patients in the high LMRG score group exhibit a poor prognosis compared to those in the low LMRG score group, with a high frequency of TP53 and KRAS mutations. Moreover, the infiltration and function of NK cells were compromised in the high LMRG score group, consistent with the results from two independent single-cell RNA sequencing datasets and immunohistochemistry of tissue microarrays. Experimental data revealed that lactate dehydrogenase A (LDHA) knockdown inhibited proliferation and migration in iCCA cell lines and tumor growth in immunocompetent mice. CONCLUSION: Our study revealed the biological roles of LDHA in iCCA and developed a reliable lactate metabolism-related prognostic signature for iCCA, offering promising therapeutic targets for iCCA in the clinic.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Animais , Camundongos , Prognóstico , Colangiocarcinoma/genética , Lactato Desidrogenase 5 , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Lactatos , Microambiente Tumoral/genética
2.
Cell Death Dis ; 15(3): 209, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480704

RESUMO

Metabolic reprogramming, a hallmark of cancer, is closely associated with tumor development and progression. Changes in glycolysis play a crucial role in conferring radiation resistance to tumor cells. How radiation changes the glycolysis status of cancer cells is still unclear. Here we revealed the role of TAB182 in regulating glycolysis and lactate production in cellular response to ionizing radiation. Irradiation can significantly stimulate the production of TAB182 protein, and inhibiting TAB182 increases cellular radiosensitivity. Proteomic analysis indicated that TAB182 influences several vital biological processes, including multiple metabolic pathways. Knockdown of TAB182 results in decreased lactate production and increased pyruvate and ATP levels in cancer cells. Moreover, knocking down TAB182 reverses radiation-induced metabolic changes, such as radioresistant-related lactate production. TAB182 is necessary for activating LDHA transcription by affecting transcription factors SP1 and c-MYC; its knockdown attenuates the upregulation of LDHA by radiation, subsequently suppressing lactate production. Targeted suppression of TAB182 significantly enhances the sensitivity of murine xenograft tumors to radiotherapy. These findings advance our understanding of glycolytic metabolism regulation in response to ionizing radiation, which may offer significant implications for developing new strategies to overcome tumor radioresistance.


Assuntos
L-Lactato Desidrogenase , Proteômica , Humanos , Animais , Camundongos , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/metabolismo , Linhagem Celular Tumoral , Glicólise , Lactatos , Tolerância a Radiação/genética
3.
Cancer Lett ; 589: 216825, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548218

RESUMO

As one of the key metabolic enzymes in the glycolytic pathway, lactate dehydrogenase A (LDHA) might be linked to tumor proliferation by driving the Warburg effect. Circular RNAs (circRNAs) are widely implicated in tumor progression. Here, we report that circTATDN3, a circular RNA that interacts with LDHA, plays a critical role in proliferation and energy metabolism in CRC. We found that circTATDN3 expression was increased in CRC cells and tumor tissues and that high circTATDN3 expression was positively associated with poor postoperative prognosis in CRC patients. Additionally, circTATDN3 promoted the proliferation of CRC cells in vivo and vitro. Mechanistically, circTATDN3 was shown to function as an adaptor molecule that enhances the binding of LDHA to FGFR1, leading to increased LDHA phosphorylation and consequently promoting the Warburg effect. Moreover, circTATDN3 increased the expression of LDHA by sponging miR-511-5p, which synergistically promoted CRC progression and the Warburg effect. In conclusion, circTATDN3 may be a target for the treatment of CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , RNA Circular/genética , Linhagem Celular Tumoral , Lactato Desidrogenase 5/genética , Lactato Desidrogenase 5/metabolismo , Neoplasias Colorretais/patologia , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica
4.
Nat Commun ; 15(1): 1987, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443336

RESUMO

Abundant macrophage infiltration and altered tumor metabolism are two key hallmarks of glioblastoma. By screening a cluster of metabolic small-molecule compounds, we show that inhibiting glioblastoma cell glycolysis impairs macrophage migration and lactate dehydrogenase inhibitor stiripentol emerges as the top hit. Combined profiling and functional studies demonstrate that lactate dehydrogenase A (LDHA)-directed extracellular signal-regulated kinase (ERK) pathway activates yes-associated protein 1 (YAP1)/ signal transducer and activator of transcription 3 (STAT3) transcriptional co-activators in glioblastoma cells to upregulate C-C motif chemokine ligand 2 (CCL2) and CCL7, which recruit macrophages into the tumor microenvironment. Reciprocally, infiltrating macrophages produce LDHA-containing extracellular vesicles to promote glioblastoma cell glycolysis, proliferation, and survival. Genetic and pharmacological inhibition of LDHA-mediated tumor-macrophage symbiosis markedly suppresses tumor progression and macrophage infiltration in glioblastoma mouse models. Analysis of tumor and plasma samples of glioblastoma patients confirms that LDHA and its downstream signals are potential biomarkers correlating positively with macrophage density. Thus, LDHA-mediated tumor-macrophage symbiosis provides therapeutic targets for glioblastoma.


Assuntos
Glioblastoma , Animais , Humanos , Camundongos , Glioblastoma/genética , L-Lactato Desidrogenase/genética , Lactato Desidrogenase 5 , Ácido Láctico , Simbiose , Microambiente Tumoral
5.
Int J Mol Med ; 53(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38426579

RESUMO

SET domain bifurcated 1 (SETDB1), a pivotal histone lysine methyltransferase, is transported to the cytoplasm via a chromosome region maintenance 1 (CMR1)­dependent pathway, contributing to non­histone methylation. However, the function and underlying mechanism of cytoplasmic SETDB1 in breast cancer remain elusive. In the present study, immunohistochemistry revealed that elevated cytoplasmic SETDB1 was correlated with lymph node metastasis and more aggressive breast cancer subtypes. Functionally, wound healing and Transwell assays showed that cytoplasmic SETDB1 is key for cell migration and invasion, as well as induction of epithelial­mesenchymal transition (EMT), which was reversed by leptomycin B (LMB, a CMR1 inhibitor) treatment. Furthermore, RNA­seq and metabolite detection revealed that cytoplasmic SETDB1 was associated with metabolism pathway and elevated levels of metabolites involved in the Warburg effect, including glucose, pyruvate, lactate and ATP. Immunoblotting and reverse transcription­quantitative PCR verified that elevation of cytoplasmic SETDB1 contributed to elevation of c­MYC expression and subsequent upregulation of lactate dehydrogenase A (LDHA) expression. Notably, gain­ and loss­of­function approaches revealed that LDHA overexpression in T47D cells enhanced migration and invasion by inducing EMT, while its depletion in SETDB1­overexpressing MCF7 cells reversed SETDB1­induced migration and invasion, as well as the Warburg effect and EMT. In conclusion, subcellular localization of cytoplasmic SETDB1 may be a pivotal factor in breast cancer progression. The present study offers valuable insight into the novel functions and mechanisms of cytoplasmic SETDB1.


Assuntos
Neoplasias da Mama , Domínios PR-SET , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Citoplasma/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Lactato Desidrogenase 5/genética , Lactato Desidrogenase 5/metabolismo
6.
Cancer Lett ; 587: 216696, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38331089

RESUMO

Lactate dehydrogenase A (LDHA) serves as a key regulator of the Warburg Effect by catalyzing the conversion of pyruvate to lactate in the final step of glycolysis. Both the expression level and enzyme activity of LDHA are upregulated in cancers, however, the underlying mechanism remains incompletely understood. Here, we show that LDHA is post-translationally palmitoylated by ZDHHC9 at cysteine 163, which promotes its enzyme activity, lactate production, and reduces reactive oxygen species (ROS) generation. Replacement of endogenous LDHA with a palmitoylation-deficient mutant leads to reduced pancreatic cancer cell proliferation, increased T-cell infiltration, and limited tumor growth; it also affects pancreatic cancer cell response to chemotherapy. Moreover, LDHA palmitoylation is upregulated in gemcitabine resistant pancreatic cancer cells. Clinically, ZDHHC9 is upregulated in pancreatic cancer and correlated with poor prognoses for patients. Overall, our findings identify ZDHHC9-mediated palmitoylation as a positive regulator of LDHA, with potentially significant implications for cancer etiology and targeted therapy for pancreatic cancer.


Assuntos
L-Lactato Desidrogenase , Neoplasias Pancreáticas , Humanos , L-Lactato Desidrogenase/genética , Lipoilação , Linhagem Celular Tumoral , Lactato Desidrogenase 5/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Glicólise , Proliferação de Células , Lactatos
7.
Free Radic Biol Med ; 214: 2-18, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307156

RESUMO

Due to insufficient and defective vascularization, the tumor microenvironment is often nutrient-depleted. LDHA has been demonstrated to play a tumor-promoting role by facilitating the glycolytic process. However, whether and how LDHA regulates cell survival in the nutrient-deficient tumor microenvironment is still unclear. Here, we sought to investigate the role and mechanism of LDHA in regulating cell survival and proliferation under energy stress conditions. Our results showed that the aerobic glycolysis levels, cell survival and proliferation of cervical cancer cells decreased significantly after inhibition of LDHA under normal culture condition while LDHA deficiency greatly inhibited glucose starvation-induced ferroptosis and promoted cell proliferation and tumor formation under energy stress conditions. Mechanistic studies suggested that glucose metabolism shifted from aerobic glycolysis to mitochondrial OXPHOS under energy stress conditions and LDHA knockdown increased accumulation of pyruvate in the cytosol, which entered the mitochondria and upregulated the level of oxaloacetate by phosphoenolpyruvate carboxylase (PC). Importantly, the increase in oxaloacetate production after absence of LDHA remarkably activated AMP-activated protein kinase (AMPK), which increased mitochondrial biogenesis and mitophagy, promoted mitochondrial homeostasis, thereby decreasing ROS level. Moreover, repression of lipogenesis by activation of AMPK led to elevated levels of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which effectively resisted ROS-induced cell ferroptosis and enhanced cell survival under energy stress conditions. These results suggested that LDHA played an opposing role in survival and proliferation of cervical cancer cells under energy stress conditions, and inhibition of LDHA may not be a suitable treatment strategy for cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Proteínas Quinases Ativadas por AMP , Lactato Desidrogenase 5 , Oxaloacetatos , Espécies Reativas de Oxigênio , Microambiente Tumoral , Neoplasias do Colo do Útero/genética
8.
Mol Biol Rep ; 51(1): 152, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236332

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignant tumor that originates in the nasopharyngeal mucosa and is common in China and Southeast Asian countries. Cancer cells reprogram glycolytic metabolism to promote their growth, survival and metastasis. Glycolysis plays an important role in NPC development, but the underlying mechanisms remain incompletely elucidated. Lactate dehydrogenase A (LDHA) is a crucial glycolytic enzyme, catalyzing the last step of glycolysis. This study aims to investigate the exact role of LDHA, which catalyzes the conversion of pyruvate into lactate, in NPC development. METHODS AND RESULTS: The western blot and immunohistochemical (IHC) results indicated that LDHA was significantly upregulated in NPC cells and clinical samples. LDHA knockdown by shRNA significantly inhibited NPC cell proliferation and invasion. Further knockdown of LDHA dramatically weakened the tumorigenicity of NPC cells in vivo. Mechanistic studies showed that LDHA activated TGF-ß-activated kinase 1 (TAK1) and subsequent nuclear factor κB (NF-κB) signaling to promote NPC cell proliferation and invasion. Exogenous lactate supplementation restored NPC cell proliferation and invasion inhibited by LDHA knockdown, and this restorative effect was reversed by NF-κB inhibitor (BAY 11-7082) or TAK1 inhibitor (5Z-7-oxozeaenol) treatment. Moreover, clinical sample analyses showed that LDHA expression was positively correlated with TAK1 Thr187 phosphorylation and poor prognosis. CONCLUSIONS: Our results suggest that LDHA and its major metabolite lactate drive NPC progression by regulating TAK1 and its downstream NF-κB signaling, which could become a therapeutic target in NPC.


Assuntos
Lactato Desidrogenase 5 , MAP Quinase Quinase Quinases , NF-kappa B , Neoplasias Nasofaríngeas , Humanos , Lactato Desidrogenase 5/genética , Ácido Láctico , MAP Quinase Quinase Quinases/metabolismo , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , NF-kappa B/metabolismo
9.
Molecules ; 29(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38202819

RESUMO

Salvianolic acid B (Sal B) is the primary water-soluble bioactive constituent derived from the roots of Salvia miltiorrhiza Bunge. This research was designed to reveal the potential mechanism of Sal B anti-liver injury from the perspective of macrophages. In our lipopolysaccharide-induced M1 macrophage model, Sal B showed a clear dose-dependent gradient of inhibition of the macrophage trend of the M1 type. Moreover, Sal B downregulated the expression of lactate dehydrogenase A (LDHA), while the overexpression of LDHA impaired Sal B's effect of inhibiting the trend of macrophage M1 polarization. Additionally, this study revealed that Sal B exhibited inhibitory effects on the lactylation process of histone H3 lysine 18 (H3K18la). In a ChIP-qPCR analysis, Sal B was observed to drive a reduction in H3K18la levels in the promoter region of the LDHA, NLRP3, and IL-1ß genes. Furthermore, our in vivo experiments showed that Sal B has a good effect on alleviating CCl4-induced liver injury. An examination of liver tissues and the Kupffer cells isolated from those tissues proved that Sal B affects the M1 polarization of macrophages and the level of histone lactylation. Together, our data reveal that Sal B has a potential mechanism of inhibiting the histone lactylation of macrophages by downregulating the level of LDHA in the treatment of liver injury.


Assuntos
Benzofuranos , Depsídeos , Histonas , Ácido Láctico , Fígado , Macrófagos , Lactato Desidrogenase 5
10.
Cell Death Dis ; 15(1): 64, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233415

RESUMO

Renal cell carcinoma (RCC) is one of the three major malignant tumors of the urinary system and originates from proximal tubular epithelial cells. Clear cell renal cell carcinoma (ccRCC) accounts for approximately 80% of RCC cases and is recognized as a metabolic disease driven by genetic mutations and epigenetic alterations. Through bioinformatic analysis, we found that FK506 binding protein 10 (FKBP10) may play an essential role in hypoxia and glycolysis pathways in ccRCC progression. Functionally, FKBP10 promotes the proliferation and metastasis of ccRCC in vivo and in vitro depending on its peptidyl-prolyl cis-trans isomerase (PPIase) domains. Mechanistically, FKBP10 binds directly to lactate dehydrogenase A (LDHA) through its C-terminal region, the key regulator of glycolysis, and enhances the LDHA-Y10 phosphorylation, which results in a hyperactive Warburg effect and the accumulation of histone lactylation. Moreover, HIFα negatively regulates the expression of FKBP10, and inhibition of FKBP10 enhances the antitumor effect of the HIF2α inhibitor PT2385. Therefore, our study demonstrates that FKBP10 promotes clear cell renal cell carcinoma progression and regulates sensitivity to HIF2α blockade by facilitating LDHA phosphorylation, which may be exploited for anticancer therapy.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Lactato Desidrogenase 5/metabolismo , Fosforilação , Linhagem Celular Tumoral , Carcinoma/genética , Neoplasias Renais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
11.
Cell Commun Signal ; 22(1): 51, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233839

RESUMO

The dynamic changes of RNA N6-methyladenosine (m6A) during cancer progression participate in various cellular processes. However, less is known about a possible direct connection between upstream regulator and m6A modification, and therefore affects oncogenic progression. Here, we have identified that a key enzyme in N4-acetylcytidine (ac4C) acetylation NAT10 is highly expressed in human osteosarcoma tissues, and its knockdown enhanced m6A contents and significantly suppressed osteosarcoma cell growth, migration and invasion. Further results revealed that NAT10 silence inhibits mRNA stability and translation of m6A reader protein YTHDC1, and displayed an increase in glucose uptake, a decrease in lactate production and pyruvate content. YTHDC1 recognizes differential m6A sites on key enzymes of glycolysis phosphofructokinase (PFKM) and lactate dehydrogenase A (LDHA) mRNAs, which suppress glycolysis pathway by increasing mRNA stability of them in an m6A methylation-dependent manner. YTHDC1 partially abrogated the inhibitory effect caused by NAT10 knockdown in tumor models in vivo, lentiviral overexpression of YTHDC1 partially restored the reduced stability of YTHDC1 caused by lentiviral depleting NAT10 at the cellular level. Altogether, we found ac4C driven RNA m6A modification can positively regulate the glycolysis of cancer cells and reveals a previously unrecognized signaling axis of NAT10/ac4C-YTHDC1/m6A-LDHA/PFKM in osteosarcoma. Video Abstract.


Assuntos
Citidina/análogos & derivados , Osteossarcoma , Fosfofrutoquinases , Humanos , Lactato Desidrogenase 5/metabolismo , Fosfofrutoquinases/metabolismo , Acetilação , RNA/metabolismo , Glicólise/genética , Osteossarcoma/patologia , Fosfofrutoquinase-1 Muscular/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acetiltransferases N-Terminal/metabolismo
12.
Int Immunopharmacol ; 126: 111265, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000233

RESUMO

BACKGROUND: Despite its early success, immunotherapy focused on removing T-cell inhibition does not achieve the desired effect in most patients. New strategies that target antigen-driven T-cell activation are needed to improve immunotherapy outcomes. However, a comprehensive analysis of synthetic drivers of T-cells is greatly lacking in lung adenocarcinoma (LUAD) and other types of tumors. METHODS: We comprehensively evaluated the patterns of LUAD patients based on T -cell synthetic drivers by unsupervised clustering analysis. A risk model was constructed using Lasso Cox regression analysis. The predicted survival and immunotherapy efficacy of the model was validated by independent cohorts. Finally, single-cell sequencing analysis, and a series of in vitro experiments were conducted to explore the role of lactate dehydrogenase A (LDHA) in the malignant progression of LUAD. RESULTS: Patients in the high-risk group were characterized by survival disadvantage, a "cold" immune phenotype, and by not having benefitted from immunotherapy. LDHA was shown to promote LUAD cell proliferation, cell cycle, invasion, and migration. Secondly, we found that LDHA induced NF-κB pathway activation, tyrosine kinase inhibitor resistance and immunosuppressant microenvironment. Finally, LDHA was found to be highly expressed in fibroblasts, which may be involved in promoting TKI resistance and mediating the immune escape. CONCLUSION: This study revealed that the T-cell synthetic driver-associated prognostic model developed herein significantly predicted prognosis and immunotherapy efficacy in LUAD. We further investigated the role of LDHA in the malignant phenotype of tumor cells and tumor microenvironment remodeling, providing a promising and novel therapeutic strategy for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Lactato Desidrogenase 5 , Prognóstico , Linfócitos T , Microambiente Tumoral
13.
Environ Toxicol ; 39(3): 1481-1493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994612

RESUMO

BACKGROUND: Matrine has been identified to have anticancer activity in hepatocellular carcinoma (HCC). Circ_0055976 was highly expressed in HCC. Here, we investigated the function and relationship of Matrine and circ_0055976 in HCC tumorigenesis. METHODS: Cell proliferation and invasion were detected using Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation and transwell assays, respectively. Cell aerobic glycolysis was evaluated by detecting glucose consumption, lactate production, and the ratios of ATP/ADP. Levels of genes and proteins were detected by quantitative real-time polymerase chain reaction and Western blotting. The target relationship between miR-1179 and circ_0055976 or lactate dehydrogenase A (LDHA) was analyzed by dual-luciferase reporter assay. The mouse xenograft model was established to conduct the in vivo assay. RESULTS: Matrine suppressed HCC cell proliferation, invasion and anaerobic glycolysis in vitro. Circ_0055976 was highly expressed in HCC tissues and cells, and was reduced by Matrine treatment. Moreover, overexpression of circ_0055976 reversed the anticancer effects of Matrine in HCC cells. Mechanistically, circ_0055976/miR-1179/LDHA formed an axis. Circ_0055976 knockdown or miR-1179 overexpression impaired HCC cell proliferation, invasion, and anaerobic glycolysis, which were reversed by miR-1179 inhibition or LDHA overexpression. Meanwhile, forced expression of LDHA abolished the regulatory effects of Matrine on HCC cells. In the clinic, Matrine impeded HCC tumor growth in vivo, and this effect was boosted after circ_0055976 silencing. CONCLUSION: Matrine suppressed HCC cell proliferation, invasion, and anaerobic glycolysis via circ_0055976/miR-1179/LDHA axis, providing a new insight into the clinical application of Matrine in HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Animais , Camundongos , Lactato Desidrogenase 5 , Matrinas , Transformação Celular Neoplásica , Carcinogênese , Proliferação de Células , Modelos Animais de Doenças , Linhagem Celular Tumoral
14.
Hepatology ; 79(3): 606-623, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733267

RESUMO

BACKGROUND AND AIMS: Aerobic glycolysis reprogramming occurs during HSC activation, but how it is initiated and sustained remains unknown. We investigated the mechanisms by which canonical Wnt signaling regulated HSC glycolysis and the therapeutic implication for liver fibrosis. APPROACH AND RESULTS: Glycolysis was examined in HSC-LX2 cells upon manipulation of Wnt/ß-catenin signaling. Nuclear translocation of lactate dehydrogenase A (LDH-A) and its interaction with hypoxia-inducible factor-1α (HIF-1α) were investigated using molecular simulation and site-directed mutation assays. The pharmacological relevance of molecular discoveries was intensified in primary cultures, rodent models, and human samples. HSC glycolysis was enhanced by Wnt3a but reduced by ß-catenin inhibitor or small interfering RNA (siRNA). Wnt3a-induced rapid transactivation and high expression of LDH-A dependent on TCF4. Wnt/ß-catenin signaling also stimulated LDH-A nuclear translocation through importin ß2 interplay with a noncanonical nuclear location signal of LDH-A. Mechanically, LDH-A bound to HIF-1α and enhanced its stability by obstructing hydroxylation-mediated proteasome degradation, leading to increased transactivation of glycolytic genes. The Gly28 residue of LDH-A was identified to be responsible for the formation of the LDH-A/HIF-1α transcription complex and stabilization of HIF-1α. Furthermore, LDH-A-mediated glycolysis was required for HSC activation in the presence of Wnt3a. Results in vivo showed that HSC activation and liver fibrosis were alleviated by HSC-specific knockdown of LDH-A in mice. ß-catenin inhibitor XAV-939 mitigated HSC activation and liver fibrosis, which were abrogated by HSC-specific LDH-A overexpression in mice with fibrosis. CONCLUSIONS: Inhibition of HSC glycolysis by targeting Wnt/ß-catenin signaling and LDH-A had therapeutic promise for liver fibrosis.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Cirrose Hepática , Via de Sinalização Wnt , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5/metabolismo , Via de Sinalização Wnt/fisiologia , Células Estreladas do Fígado/metabolismo
15.
J Pharmacol Sci ; 153(4): 197-207, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973217

RESUMO

Osteoclasts are multinucleated, specializes bone-resorbing cells that are derived from the monocyte/macrophage lineage. Excessive resorbing activities of osteoclasts are involved in destructive bone diseases. The detailed mechanism of acidification at the bone adhesion surface during the bone resorption process of osteoclasts remains to be defined. During glycolysis, pyruvate proceeds to the tricarboxylic cycle under aerobic conditions and pyruvate is converted to lactate via lactate dehydrogenase A (LDHA) under anaerobic conditions. However, tumor cells produce ATP during aerobic glycolysis and large amounts of pyruvate are converted to lactate and H+ by LDHA. Lactate and H+ are excreted outside the cell, whereby they are involved in invasion of tumor cells due to the pH drop around the cell. In this study, we focused on aerobic glycolysis and investigated the production of lactate by LDHA in osteoclasts. Expression of LDHA and monocarboxylate transporter 4 (MCT4) was upregulated during osteoclast differentiation. Intracellular and extracellular lactate levels increased with upregulation of LDHA and MCT4, respectively. FX11 (an LDHA inhibitor) inhibited osteoclast differentiation and suppressed the bone-resorbing activity of osteoclasts. We propose that inhibition of LDHA may represent a novel therapeutic strategy for controlling excessive bone resorption in osteoporosis and rheumatoid arthritis.


Assuntos
Reabsorção Óssea , Osteogênese , Humanos , Lactato Desidrogenase 5/metabolismo , Osteoclastos/fisiologia , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/metabolismo , Lactatos/metabolismo , Glicólise , Piruvatos/metabolismo , L-Lactato Desidrogenase/metabolismo
16.
ACS Biomater Sci Eng ; 9(11): 6045-6057, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37856794

RESUMO

Cancer is the second leading cause of death worldwide, with a dramatic impact due to the acquired resistance of cancers to used chemotherapeutic drugs and treatments. The enzyme lactate dehydrogenase (LDH-A) is responsible for cancer cell proliferation. Recently the development of selective LDH-A inhibitors as drugs for cancer treatment has been reported to be an efficient strategy aiming to decrease cancer cell proliferation and increase the sensitivity to traditional chemotherapeutics. This study aims to obtain a stable and active biocatalyst that can be utilized for such drug screening purposes. It is conceived by adopting human LDH-A enzyme (hLDH-A) and investigating different immobilization techniques on porous supports to achieve a stable and reproducible biosensor for anticancer drugs. The hLDH-A enzyme is covalently immobilized on mesoporous silica (MCM-41) functionalized with amino and aldehyde groups following two different methods. The mesoporous support is characterized by complementary techniques to evaluate the surface chemistry and the porous structure. Fluorescence microscopy analysis confirms the presence of the enzyme on the support surface. The tested immobilizations achieve yields of ≥80%, and the best retained activity of the enzyme is as high as 24.2%. The optimal pH and temperature of the best immobilized hLDH-A are pH 5 and 45 °C for the reduction of pyruvate into lactate, while those for the free enzyme are pH 8 and 45 °C. The stability test carried out at 45 °C on the immobilized enzyme shows a residual activity close to 40% for an extended time. The inhibition caused by NHI-2 is similar for free and immobilized hLDH-A, 48% and 47%, respectively. These findings are significant for those interested in immobilizing enzymes through covalent attachment on inorganic porous supports and pave the way to develop stable and active biocatalyst-based sensors for drug screenings that are useful to propose drug-based cancer treatments.


Assuntos
Técnicas Biossensoriais , L-Lactato Desidrogenase , Humanos , Estabilidade Enzimática , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Técnicas Biossensoriais/métodos
17.
Cancer Lett ; 577: 216425, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37805163

RESUMO

Lung adenocarcinoma (LUAD) is one of the most prevalent and aggressive types of lung cancer. Metabolic reprogramming plays a critical role in the development and progression of LUAD. Pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA) are two key enzymes involved in glucose metabolism, whilst their aberrant expressions are often associated with tumorigenesis. Herein, we investigated the anticancer effects of combined inhibition of PDK1 and LDHA in LUAD in vitro and in vivo and its underlying mechanisms of action. The combination of a PDK1 inhibitor, 64, and a LDHA inhibitor, NHI-Glc-2, led to a synergistic growth inhibition in 3 different LUAD cell lines and more than additively suppressed tumor growth in the LUAD xenograft H1975 model. This combination also inhibited cellular migration and colony formation, while it induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) resulting in mitochondrial depolarization and apoptosis in LUAD cells. These effects were related to modulation of multiple cell signaling pathways, including AMPK, RAS/ERK, and AKT/mTOR. Our findings demonstrate that simultaneous inhibition of multiple glycolytic enzymes (PDK1 and LDHA) is a promising novel therapeutic approach for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Lactato Desidrogenase 5 , Neoplasias Pulmonares , Piruvato Desidrogenase Quinase de Transferência de Acetil , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , L-Lactato Desidrogenase , Lactato Desidrogenase 5/antagonistas & inibidores , Lactato Desidrogenase 5/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Transdução de Sinais
18.
Nat Commun ; 14(1): 5472, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673914

RESUMO

Mycobacterium tuberculosis (Mtb) disrupts glycolytic flux in infected myeloid cells through an unclear mechanism. Flux through the glycolytic pathway in myeloid cells is inextricably linked to the availability of NAD+, which is maintained by NAD+ salvage and lactate metabolism. Using lung tissue from tuberculosis (TB) patients and myeloid deficient LDHA (LdhaLysM-/-) mice, we demonstrate that glycolysis in myeloid cells is essential for protective immunity in TB. Glycolytic myeloid cells are essential for the early recruitment of multiple classes of immune cells and IFNγ-mediated protection. We identify NAD+ depletion as central to the glycolytic inhibition caused by Mtb. Lastly, we show that the NAD+ precursor nicotinamide exerts a host-dependent, antimycobacterial effect, and that nicotinamide prophylaxis and treatment reduce Mtb lung burden in mice. These findings provide insight into how Mtb alters host metabolism through perturbation of NAD(H) homeostasis and reprogramming of glycolysis, highlighting this pathway as a potential therapeutic target.


Assuntos
NAD , Tuberculose , Animais , Camundongos , Homeostase , Células Mieloides , Niacinamida/farmacologia , Glicólise , Lactato Desidrogenase 5
19.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445948

RESUMO

Osteoarthritis (OA) is the most common form of arthritis and joint disorder worldwide. Metabolic reprogramming of osteoarthritic chondrocytes from oxidative phosphorylation to glycolysis results in the accumulation of lactate from glycolytic metabolite pyruvate by lactate dehydrogenase A (LDHA), leading to cartilage degeneration. In the present study, we investigated the protective effects of the intra-articular administration of oxamate (LDHA inhibitor) against OA development and glycolysis-related protein expression in experimental OA rats. The animals were randomly allocated into four groups: Sham, anterior cruciate ligament transection (ACLT), ACLT + oxamate (0.25 and 2.5 mg/kg). Oxamate-treated groups received an intra-articular injection of oxamate once a week for 5 weeks. Intra-articular oxamate significantly reduced the weight-bearing defects and knee width in ACLT rats. Histopathological analyses showed that oxamate caused significantly less cartilage degeneration in the ACLT rats. Oxamate exerts hypertrophic effects in articular cartilage chondrocytes by inhibiting glucose transporter 1, glucose transporter 3, hexokinase II, pyruvate kinase M2, pyruvate dehydrogenase kinases 1 and 2, pyruvate dehydrogenase kinase 2, and LHDA. Further analysis revealed that oxamate significantly reduced chondrocyte apoptosis in articular cartilage. Oxamate attenuates nociception, inflammation, cartilage degradation, and chondrocyte apoptosis and possibly attenuates glycolysis-related protein expression in ACLT-induced OA rats. The present findings will facilitate future research on LDHA inhibitors in prevention strategies for OA progression.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite , Ratos , Animais , Lactato Desidrogenase 5/metabolismo , Nociceptividade , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Doenças das Cartilagens/metabolismo , Modelos Animais de Doenças
20.
Eur Rev Med Pharmacol Sci ; 27(14): 6605-6617, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37522672

RESUMO

OBJECTIVE: In 1930, Otto Warburg reported that "aerobic glycolysis" is the intrinsic property of all tumor cells' fermentation of glucose to L-Lactate by lactate dehydrogenase A (LDHA) activity. This only produces per mole of glucose two moles of adenosine triphosphate (ATP), compared with 32 moles of ATP in a normal cell. Thus, tumor cells have to uptake 30 folds more glucose, the resulting accumulated lactate are then transported by a monocarboxylate transporter (MCT) with the participation of a CD147 molecule. Inhibition of MCT1 by RNA interference (RNAi) disrupted the unique metabolism of the tumor and caused tumor cell death. However, the effectiveness of the strategies depends on the targeted delivery of the therapeutics. MATERIALS AND METHODS: In this study, a synergistic approach was used to target LDHA and MCT1 with small molecule inhibitors FX11 and AR-C155858, respectively. Cell cytotoxicity assays (AlamarBlue assay), and Mitochondria Membrane Potential (JC-1) dye assays were performed on human breast cancer cells MCF-7 and colorectal cancer cells HCT116. To achieve this aim, the following objectives were proposed: the effect of metabolic inhibitors on tumor glycolytic metabolite environment, and the efficacy of metabolite inhibitors on human breast and colorectal cancer cells in vitro. Then, gene expression analysis was performed using Qiagen RT2 Profiler PCR array for apoptosis. All these assays were performed on human breast cancer cells MCF-7 and colorectal cancer cells HCT116. Normal human fibroblasts were used as control cells under normal and hypoxic culture conditions. RESULTS: In this study, the use of FX-11 inhibitors under normoxia or hypoxia in two or more cancer and normal cell lines has a direct effect on LDHA, whereby it inhibits its production, and this reduces the growth and cell proliferation of tumors. One of the more significant findings to emerge from this study is that using AR-C155858 inhibitor alone has increased the cell proliferation and showed no significant changes compared with the control. The other major finding was that combination of the two inhibitors, FX-11 and AR-C155858, under normoxia or hypoxia in two different cell lines MCF-7 and HCT-116 measured a decrease in the cells proliferative and red/green ratio. CONCLUSIONS: We successfully demonstrated that a combination of MCT1 inhibitor and LDHA inhibitor led to better outcomes. Indeed, this makes LDHA an ideal metabolic therapeutic target.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Lactato Desidrogenase 5 , Transportadores de Ácidos Monocarboxílicos , Feminino , Humanos , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Glucose/metabolismo , Glicólise , Lactato Desidrogenase 5/antagonistas & inibidores , Lactato Desidrogenase 5/metabolismo , Lactatos/farmacologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...